Как найти координаты точки пересечения прямых

Определение точки пересечения окружности с прямой


Чтобы найти точку пересечения прямых, достаточно рассмотреть их в плоскости, где они расположены. Далее необходимо составить уравнение этих прямых и, решив его, вы получите искомые результаты.

Как найти координаты точки пересечения прямых

Вопрос «Как определить объем трубы?Если ее длина 200м а диаметр 65мм.» — 3 ответа
Инструкция
1
Запомните, что общее уравнение прямой в декартовых координатах имеет вид Ax+By+C = 0. Если прямые пересекаются, то уравнение первой из них можно записать соответственно как Ax+By+C = 0, а второй – в виде Dx+Ey+F = 0. Задайте все имеющиеся коэффициенты: A, B, C, D, E, F. Для нахождения точки пересечения прямых необходимо решить систему данных линейных уравнений. Сделать это можно несколькими способами.

2
Умножьте первое уравнение на E, а второе — на B. После этого уравнения должны выглядеть как: DBx+EBy+FB = 0, AEx+BEy+CE = 0. Далее вычтите второе уравнение из первого, чтобы получилось: (AE-DB)x = FB-CE. Вынесите коэффициент: x = (FB-CE)/(AE-DB).

3
Умножьте на D первое уравнение данной системы, а второе — на A, после чего нужно вновь вычесть второе из первого. В результате должно получиться уравнение: y = (CD-FA)/(AE-DB).

Найдите x и y, и вы получите искомые координаты точки пересечения прямых.
4
Попробуйте записать уравнения прямых через угловой коэффициент k, который равен тангенсу угла пересечения прямых.

При этом у вас получится уравнение: y = kx+b. Задайте для первой прямой равенство y = k1*x+b1, а для второй — y = k2*x+b2.
5
Приравняйте правые части двух уравнений, чтобы получилось: k1*x+b1 = k2*x+b2.

Далее вынесите переменную: x = (b1-b2)/(k2-k1). Подставьте значение x в оба уравнения и получите: y = (k2*b1-k1*b2)/(k2-k1).

Координаты точки пересечения будут задавать значения x и y.

Похожие статьи:

Читайте также: